Annotation and Provision of Datasets

As part of our project, we worked on the manual annotation of a large number of datasets with the aim of supporting the development of AI methods for evaluating public participation contributions.

Supervised machine learning requires training datasets in order to learn patterns related to the respective codings. In the area of citizen participation, there is a lack of comprehensively coded German-language datasets. In order to meet this need, we have therefore worked on annotating German-language participation processes from the field of mobility according to four dimensions:

  • Firstly, we have thematically classified contributions according to modes of transportation, other requirements for public space, and defects that need to be fixed immediately.
  • Second, we coded processes by argumentative sentences and divided them into premises and conclusions.
  • Thirdly, we have assigned argumentative units of meaning to how concrete they are.
  • Fourthly, we have coded textual location information.

A more detailed description of the datasets – as of June 2022 – can be found in our publication: Romberg, Julia; Mark, Laura; Escher, Tobias (2022, June). A Corpus of German Citizen Contributions in Mobility Planning: Supporting Evaluation Through Multidimensional Classification. Since then, we have continued to work on the thematic coding of the datasets and revised our scheme of modes of transport.

The following table shows the current status of annotation and is updated on an ongoing basis (in German):

In accordance with our open source policy, the annotated datasets are made available to the public under Creative Commons CC BY-SA License when possible.

A number of publications have been produced based on these data sets. These can be found at https://www.cimt-hhu.de/gruppe/romberg/romberg-veroeffentlichungen/.

Master’s thesis on the thematic classification of participation contributions with Active Learning

As part of his Master’s thesis in the MA Computer Science at Heinrich Heine University Düsseldorf, Boris Thome dealt with the classification of participation contributions according to the topics they contain. This thesis continues the work of Julia Romberg and Tobias Escher by examining a finer classification of contributions according to subcategories.

Summary

Political authorities in democratic countries regularly consult the public on specific issues but subsequently evaluating the contributions requires substantial human resources, often leading to inefficiencies and delays in the decision-making process. Among the solutions proposed is to support human analysts by thematically grouping the contributions through automated means.

While supervised machine learning would naturally lend itself to the task of classifying citizens’ proposal according to certain predefined topics, the amount of training data required is often prohibitive given the idiosyncratic nature of most public participation processes. One potential solution to minimize the amount of training data is the use of active learning. In our previous work, we were able to show that active learning can significantly reduce the manual annotation effort for coding top-level categories. In this work, we subsequently investigated whether this advantage is still given when the top-level categories are subdivided into subcategories. A particular challenge arises from the fact that some of the subcategories can be very rare and therefore only cover a few contributions.

In the evaluation of various methods, data from online participation processes in three German cities was used. The results show that the automatic classification of subcategories is significantly more difficult than the classification of the main categories. This is due to the high number of possible subcategories (30 in the dataset under consideration), which are very unevenly distributed. In conclusion, further research is required to find a practical solution for the flexible assignment of subcategories using machine learning.

Publication

Thome, Boris (2022): Thematische Klassifikation von Partizipationsverfahren mit Active Learning. Masterarbeit am Institut für Informatik, Lehrstuhl für Datenbanken und Informationssysteme, der Heinrich-Heine-Universität Düsseldorf. (Download)

Master’s thesis on the automated classification of arguments in participation contributions

As part of her master’s thesis in the MA Computer Science at Heinrich Heine University Düsseldorf, Suzan Padjman dealt with the classification of argumentation components in participation contributions. This thesis continues our team’s previous work by looking at cases in which argumentative sentences can contain both a premise and a conclusion.

Summary

Public participation processes allow citizens to engage in municipal decision-making processes by expressing their opinions on specific issues. Municipalities often only have limited resources to analyze a possibly large amount of textual contributions that need to be evaluated in a timely and detailed manner. Automated support for the evaluation is therefore essential, e.g. to analyze arguments.

When classifying argumentative sentences according to type (here: premise or conclusion), it can happen that one sentence contains several components of an argument. In this case, there is a need for multi-label classification, in which more than one category can be assigned.

To solve this problem, different methods for multi-label classification of argumentation components were compared (SVM, XGBoost, BERT and DistilBERT). The results showed that BERT models can achieve a macro F1 score of up to 0.92. The models exhibit robust performance across different datasets – an important indication of the practical usability of such methods.

Publication

Padjman, Suzan (2022): Mining Argument Components in Public Participation Processes. Masterarbeit am Institut für Informatik, Lehrstuhl für Datenbanken und Informationssysteme, der Heinrich-Heine-Universität Düsseldorf. (Download)

Project work on the automated recognition of locations in participation contributions

As part of her project work in the MA Computer Science at Heinrich Heine University Düsseldorf, Suzan Padjman worked on the development of methods for the automated recognition of textually described location information in participation procedures.

Summary

In the context of the mobility transition, consultative processes are a popular tool for giving citizens the opportunity to represent and contribute their interests and concerns. Especially in the case of mobility-related issues, an important analysis aspect of the collected contributions is which locations (e.g. roads, intersections, cycle paths or footpaths) are problematic and in need of improvement in order to promote sustainable mobility. Automated identification of such locations has the potential to support the resource-intensive manual evaluation.

The aim of this work was therefore to find an automated solution for identifying locations using methods from natural language processing (NLP). For this purpose, a location was defined as the description of a specific place of a proposal, which could be marked on a map. Examples of locations are street names, city districts and clearly assignable places, such as “in the city center” or “at the exit of the main train station”. Pure descriptions without reference to a specific place were not considered as locations. Methodologically, the task was regarded as a sequence labeling task, as locations often consist of several consecutive tokens, so-called word sequences.

A comparison of different models (spaCy NER, GermanBERT, GBERT, dbmdz BERT, GELECTRA, multilingual BERT, multilingual XLM-RoBERTa) on two German-language participation datasets on cycling infrastructure in Bonn and Cologne Ehrenfeld showed that GermanBERT achieves the best results. This model can recognize tokens that are part of a textual location description with a promising macro F1 score of 0.945. In future work, it is planned to convert the recognized text phrases into geocoordinates in order to depict the recognized location of citizens’ proposals on a map.

Publication

Padjman, Suzan (2021): Unterstützung der Auswertung von verkehrsbezogenen Bürger*innenbeteiligungsverfahren durch die automatisierte Erkennung von Verortungen. Projektarbeit am Institut für Informatik, Lehrstuhl für Datenbanken und Informationssysteme, der Heinrich-Heine-Universität Düsseldorf. (Download)

Meet the team: Julia

In the meet the team series, we introduce a member of the research group every week to give an impression beyond the scientific work. For this purpose, our student assistant Philippe Sander asked us a few questions.

Today in the interview: Julia Romberg. As a computer scientist, she develops methods for the (partially) automated classification of contributions in participation processes. More info on Julia’s research can be found here.

Julia Romberg
Foto: Tilman Schenk

What inspired you to pursue a career in your research field, and how did you get started in your field?

I studied computer science because I enjoyed math at school and wanted to try something technical. In my master’s degree I started working with language data. Since I always found human language very interesting, I stuck with it.

Can you describe your current research project and what you hope to achieve with it? What do you personally find the most interesting about it?

The aim of my research project is to support the evaluation of textual contributions from citizen participation processes. One challenge is that often large amounts of data are generated, e.g., as emails or via online platforms. These are supposed to be evaluated within a certain time frame, but at the same time their evaluation must fulfill certain democratic norms (e.g., every voice must be heard). These requirements are difficult to comply by a pure manual evaluation, and that’s where computational approaches come in.

How do you go about your research? What methods, theories or frameworks do you use?

I use natural language processing tools to pre-structure public contributions thematically and to identify citizens’ arguments in order to highlight them fora subsequent manual analysis.

What are some of the biggest challenges you face in your work and how do you overcome them?

We are a transdisciplinary and interdisciplinary project. Communication across different disciplines is always a bit difficult, e.g., because of different terminologies and the strong focus on very specific research questions. That’s why we took our time at the beginning of the project to build a common ground to better understand each other and raising awareness for this particular challenge. The same applies for our communication with the practice, so that people without closer connection to the research area can understand our research. My recommendation for good science communication is “learning by doing”, e.g., by regularly preparing presentations for a non-specialist audience.

How do you stay on top of the latest trends and developments in your field?

Of course, it is an advantage that AI and natural language processing have aroused the broad interest of the media by now (keyword ChatGPT). Additionally, reading the current literature is a must. At the same time, the fast pace of the research field makes it difficult to maintain a comprehensive overview. For this purpose, the exchange with colleagues as well as the participation in tutorials and workshops is important in order to stay up to date with the latest research.

How do you collaborate with other researchers or experts in your field to improve your projects?

I participate in and organize colloquia and workshops in which people exchange ideas on various thematic focal points. Suggestions from such talks and discussions naturally flow back into my own work and sometimes even result in collaborations.

What impact do you hope your research will have on society or the field?

I hope that the methods developed can find application in practice.

What are some emerging trends or future directions you see in your research area?

A current trend are “prompt-based” approaches, where one consults large language models with different objectives.

Can you tell us about any interesting or meaningful experiences you had during your research?

Before I started working on the project, I worked at a chair in computer science, where rather advanced concepts were developed. However, I learned that practical use cases often need down-to-earth solutions first.

What advice do you have for students and aspiring scientists just starting out in their careers?

A good network and a clear research agenda are essential. It helps to set as narrow a scope as possible to develop a realistic project management. Even from a small delineated framework, quite a lot of research usually results. Especially in interdisciplinary and transdisciplinary projects, it should also be ensured that there is enough time for research that is relevant within one’s own discipline.

Lastly, can you tell us a little about yourself outside of your work? What hobbies or interests do you pursue in your spare time, and how do they complement your research?

I play bass guitar in a band and do Ashtanga yoga, where you only get ahead if you persevere. It’s the same as in science: you have to stick with something until it pays off.

Supporting the Manual Evaluation Process of Citizen’s Contributions Through Natural Language Processing

Doctoral thesis (full text) of Julia Romberg

Engaging citizens in decision-making processes is a widely implemented instrument in democracies. On the one hand, such public participation processes serve the goal of achieving a more informed process and thus to potentially improve the process outcome, i.e. resulting policies, through the ideas and suggestions of the citizens. On the other hand, involving the citizenry is an attempt to increase the public acceptance of decisions made.

As public officials try to evaluate the often large quantities of citizen input, they regularly face challenges due to restricted resources (e.g. lack of personnel,time limitations). When it comes to textual contributions, natural language processing (NLP) offers the opportunity to provide automated support for the evaluation, which to date is still carried out mainly manually. Although some research has already been conducted in this area, important questions have so far been insufficiently addressed or have remained completely unanswered.

My dissertation, which I successfully completed in 2023, therefore focused on how existing research gaps can be overcome with the help of text classification methods. A particular emphasis was placed on the sub-tasks of thematic structuring and argument analysis of public participation data.

The thesis begins with a systematic literature review of previous approaches to the machine-assisted evaluation of textual contributions (for more insights, please refer to this article). Given the identified shortage of language resources, subsequently the newly created multidimensionally annotated CIMT corpus to facilitate the development of text classification models for German-language public participation is presented (for more insights, please refer to this article).

The first focus is on the thematic structuring of public input, particularly considering the uniqueness of many public participation processes in
terms of content and context. To make customized models for automation worthwhile, we leverage the concept of active learning to reduce manual workload by optimizing training data selection. In a comparison across three participation processes, we show that transformer-based active learning can significantly reduce manual classification efforts for process sizes starting at a few hundred contributions while maintaining high accuracy and affordable runtimes (for more insights, please refer to this article). We then turn to the criteria of practical applicability that conventional evaluation does not encompass. By proposing measures that reflect class-related demands users place on data acquisition, we provide insights into the behavior of different active learning strategies on class-imbalanced datasets, which is a common characteristic in collections of public input.

Afterward, we shift the focus to the analysis of citizens’ reasoning. Our first contribution lies in the development of a robust model for the detection of argumentative structures across different processes of public participation. Our approach improves upon previous techniques in the application domain for the recognition of argumentative sentences and, in particular, their classification as argument components (for more insights, please refer to this article). Following that, we explore the machine prediction of argument concreteness. In this context, the subjective nature of argumentation was accounted for by presenting a first approach to model different perspectives in the input representation of machine learning in argumentation mining (for more insights, please refer to this article).

Enriching Machine Prediction with Subjectivity Using the Example of Argument Concreteness in Public Participation

In this publication in the Workshop on Argument Mining, Julia Romberg develops a method to incorporate human perspectivism in machine prediction. The method is tested on the task of argument concreteness in public participation contributions.

Abstract

Although argumentation can be highly subjective, the common practice with supervised machine learning is to construct and learn from an aggregated ground truth formed from individual judgments by majority voting, averaging, or adjudication. This approach leads to a neglect of individual, but potentially important perspectives and in many cases cannot do justice to the subjective character of the tasks. One solution to this shortcoming are multi-perspective approaches, which have received very little attention in the field of argument mining so far.

In this work we present PerspectifyMe, a method to incorporate perspectivism by enriching a task with subjectivity information from the data annotation process. We exemplify our approach with the use case of classifying argument concreteness, and provide first promising results for the recently published CIMT PartEval Argument Concreteness Corpus.

Key findings

  • Machine learning often assumes a single ground truth to learn from, but this does not hold for subjective tasks.
  • PerspectifyMe is a simple method to incorporate perspectivism in existing machine learning workflows by complementing an aggregated label with a subjectivity score.
  • An example of a subjective task is the classification of the concreteness of an argument (low, medium, high), a task whose solution can also benefit the machine-assisted evaluation of public participation processes.
  • First approaches to classifying the concreteness of arguments (aggregated label) show an accuracy of 0.80 and an F1 value of 0.67.
  • The subjectivity of concreteness perception (objective vs. subjective) can be predicted with an accuracy of 0.72 resp. an F1 value of 0.74.

Publication

Romberg, Julia (2022, October). Is Your Perspective Also My Perspective? Enriching Prediction with Subjectivity. In Proceedings of the 9th Workshop on Argument Mining (pp.115-125), Gyeongju, Republic of Korea. Association for Computational Linguistics. https://aclanthology.org/2022.argmining-1.11

Automated Topic Categorization of Citizens’ Contributions: Reducing Manual Labeling Efforts Through Active Learning

In this publication in Electronic Government, Julia Romberg and Tobias Escher investigate the potential of active learning for reducing the manual labeling efforts in categorizing public participation contributions thematically.

Abstract

Political authorities in democratic countries regularly consult the public on specific issues but subsequently evaluating the contributions requires substantial human resources, often leading to inefficiencies and delays in the decision-making process. Among the solutions proposed is to support human analysts by thematically grouping the contributions through automated means.

While supervised machine learning would naturally lend itself to the task of classifying citizens’ proposal according to certain predefined topics, the amount of training data required is often prohibitive given the idiosyncratic nature of most public participation processes. One potential solution to minimize the amount of training data is the use of active learning. While this semi-supervised procedure has proliferated in recent years, these promising approaches have never been applied to the evaluation of participation contributions.

Therefore we utilize data from online participation processes in three German cities, provide classification baselines and subsequently assess how different active learning strategies can reduce manual labeling efforts while maintaining a good model performance. Our results show not only that supervised machine learning models can reliably classify topic categories for public participation contributions, but that active learning significantly reduces the amount of training data required. This has important implications for the practice of public participation because it dramatically cuts the time required for evaluation from which in particular processes with a larger number of contributions benefit.

Key findings

  • We compare a variety of state-of-the-art approaches for text classification and active learning on a case study of three nearly identical participation processes for cycling infrastructure in the German municipalities of Bonn, Ehrenfeld (a district of Cologne) and Moers.
  • We find that BERT can predict the correct topic(s) for about 77% of the cases.
  • Active learning significantly reduces manual labeling efforts: it was sufficient to manually label 20% to 50% of the datasets to maintain the level of accuracy. Efficiency-improvements grow with the size of the dataset.
  • At the same time, the models operate within an efficient runtime.
  • We therefore hypothesize that active learning should significantly reduce human efforts in most use cases.

Publication

J. Romberg and T. Escher. Automated topic categorisation of citizens’ contributions: Reducing manual labelling efforts through active learning. In M. Janssen, C. Csáki,I. Lindgren, E. Loukis, U. Melin, G. Viale Pereira, M. P. Rodríguez Bolívar, and E. Tambouris, editors,Electronic Government, pages 369–385, Cham, 2022. SpringerInternational Publishing. ISBN 978-3-031-15086-9

A Corpus of German Citizen Contributions in Mobility Planning: Supporting Evaluation Through Multidimensional Classification

In this publication in the Conference on Language Resources and Evaluation, Julia Romberg, Laura Mark and Tobias Escher introduce a collection of annotated datasets that promotes the development of machine learning approaches to support the evaluation of public participation contributions.

Abstract

Political authorities in democratic countries regularly consult the public in order to allow citizens to voice their ideas and concerns on specific issues. When trying to evaluate the (often large number of) contributions by the public in order to inform decision-making, authorities regularly face challenges due to restricted resources.

We identify several tasks whose automated support can help in the evaluation of public participation. These are i) the recognition of arguments, more precisely premises and their conclusions, ii) the assessment of the concreteness of arguments, iii) the detection of textual descriptions of locations in order to assign citizens’ ideas to a spatial location, and iv) the thematic categorization of contributions. To enable future research efforts to develop techniques addressing these four tasks, we introduce the CIMT PartEval Corpus, a new publicly-available German-language corpus that includes several thousand citizen contributions from six mobility-related planning processes in five German municipalities. The corpus provides annotations for each of these tasks which have not been available in German for the domain of public participation before either at all or in this scope and variety.

Key findings

  • The CIMT PartEval Argument Component Corpus comprises 17,852 sentences from German public participation processes annotated as non-argumentative, premise, or major position.
  • The CIMT PartEval Argument Concreteness Corpus consists of 1,127 argumentative text spans that are annotated according to three levels of concreteness: low, intermediate, and high.
  • Der CIMT PartEval Geographic Location Corpus consists of 4,830 locations and the GPS coordinates for 2,529 proposals from public consultations.
  • The CIMT PartEval Thematic Categorization Corpus relies on a new hierarchical categorization scheme for mobility that captures modes of transport (non-motorized transport: cycling, walking, scooters; motorized transport: local public transport, long-distance public transport, commercial transport) and a number of specifications, such as moving or stationary traffic, new services, and inter- and multimodality. In total, 697 documents have been annotated according to this scheme.

Publication

Romberg, Julia; Mark, Laura; Escher, Tobias (2022, June). A Corpus of German Citizen Contributions in Mobility Planning: Supporting Evaluation Through Multidimensional Classification. In Proceedings of the Language Resources and Evaluation Conference (pp. 2874–2883), Marseille, France. European Language Resources Association. https://aclanthology.org/2022.lrec-1.308

Corpus available under

https://github.com/juliaromberg/cimt-argument-mining-dataset

https://github.com/juliaromberg/cimt-argument-concreteness-dataset

https://github.com/juliaromberg/cimt-geographic-location-dataset

https://github.com/juliaromberg/cimt-thematic-categorization-dataset

Robust Methods for Classifying Argument Components in Public Participation Processes for Mobility Planning

In this publication in the Workshop on Argument Mining, Julia Romberg and Stefan Conrad address the robustness of classification algorithms for argument mining to build reliable models that generalize across datasets.

Abstract

Public participation processes allow citizens to engage in municipal decision-making processes by expressing their opinions on specific issues. Municipalities often only have limited resources to analyze a possibly large amount of textual contributions that need to be evaluated in a timely and detailed manner. Automated support for the evaluation is therefore essential, e.g. to analyze arguments.

In this paper, we address (A) the identification of argumentative discourse units and (B) their classification as major position or premise in German public participation processes. The objective of our work is to make argument mining viable for use in municipalities. We compare different argument mining approaches and develop a generic model that can successfully detect argument structures in different datasets of mobility-related urban planning. We introduce a new data corpus comprising five public participation processes. In our evaluation, we achieve high macro F1 scores (0.76 – 0.80 for the identification of argumentative units; 0.86 – 0.93 for their classification) on all datasets. Additionally, we improve previous results for the classification of argumentative units on a similar German online participation dataset.

Key findings

  • We conducted a comprehensive evaluation of machine learning methods across five public participation process in German municipalities that differ in format (online participation platforms and questionnaires) and process subject.
  • BERT surpasses previously published argument mining approaches for public participation processes on German data for both tasks, reaching macro F1 scores of 0.76 – 0.80 for the identification of argumentative units and macro F1 scores of 0.86 – 0.93 for their classification.
  • In a cross-dataset evaluation, BERT models trained on one dataset can recognize argument structures in other public participation datasets (which were not part of the training) with comparable goodness of fit.
  • Such model robustness across datasets is an important step towards the practical application of argument mining in municipalities.

Publication

Romberg, Julia; Conrad, Stefan (2021, November). Citizen Involvement in Urban Planning – How Can Municipalities Be Supported in Evaluating Public Participation Processes for Mobility Transitions?. In Proceedings of the 8th Workshop on Argument Mining (pp. 89-99), Punta Cana, Dominican Republic. Association for Computational Linguistics. https://aclanthology.org/2021.argmining-1.9